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1. Introduction 

The Signal and Image Processing Division of the Army Research Laboratory is seeking to 
develop technology using small, low-power, low-cost sensors to detect magnetic fields in the 
battlefield generated by the presence and/or movement of armed troops, tracked and wheeled 
vehicles, and/or mines.  The magnetic sensors will be part of an array of microsensors of various 
technologies that also include other sensor modalities such as acoustics, seismic, infrared, radio 
frequency (RF), and extremely low frequency electric field sensors.  These sensor systems are to 
be deployed as unattended ground sensors (UGS) with remote activation/data acquisition as 
depicted in figure 1.  We anticipate that multi-modal data fusion will provide enhanced detection 
and/or discrimination capability.  We prefer sensors that can be fabricated by microelectronic/ 
thin film techniques that use the existing industrial base to lower cost. 

Figure 1. Networked microsensor concept showing the deployment of 
multiple sensors and the rf communication links between the 
sensors as they detect objects of military significance. 

Networked Microsensors Concept

Here we report the results of an earlier test using anisotropic magnetoresistance (AMR) sensors 
conducted at Spesutie Island, Aberdeen Proving Ground, MD.  The purpose of this testing 
program was to determine what useful information on vehicles of military interest could be 
obtained using low cost anisotropic AMR vector magnetometers.  Such magnetometers may be 
one of the sensors employed in UGS networks.  Three kinds of vehicles were investigated:  a 
light wheeled vehicle (Vehicle A), a tank (Vehicle B), and 2 ½ ton truck (Vehicle C).  We 
measured the difference in the signal when the tank was going forward and when it was going 
backward.  We also investigated the signal generated by rotating the gun turret and raising and 
lowering the gun.   
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2. Magnetometers Used In Test 

We used for these tests an array of four Honeywell HMR-2300, 3-axis anisotropic AMR 
magnetometers.  The sensing element of an AMR magnetometer is a permalloy (nickel-iron 
alloy) thin film layer deposited on a silicon substrate.1  The resistance due to the application of a 
magnetic field is about 4 percent.  The material is used in a Wheatstone bridge configuration in 
which an applied field creates a voltage imbalance between two arms of the bridge:  one being 
exposed to the field to be detected, and the other shielded from the field.2  These sensor elements 
are manufactured on wafers and assembled with other circuit components using microelectronic 
fabrication techniques.  We chose these magnetometers even though they have a sensitivity of 
only 7 nT because they are made commercially, represent the present industrial capability, and 
are available for about $500.00 each.  As seen in figure 2 the sensor is quite small. 

 

AMR 3-Axis Magnetometer
Used in Test

 
Figure 2. AMR magnetometer (HMC 2003-T) used in field 

test with and without its cover. 

                                                 
1Caruso, Bratland, Smith and Schneider.  A New Perspective on Magnetic Field Sensing.  Proceedings of Sensor Expo San 

Jose (Halmers Publishing Co.) Peterborough, New Hampshire 1998, pp 351-370. 
2Lenz, James; Edlestein, Alan S.  Magnetic Sensors and Their Applications.  IEEE Sensors Journal 2006, 6 (3), 635-637. 



 

The magnetometer consists of three sensor elements positioned with their sense directions 
orthogonal to each other to measure the three rectangular components of an external magnetic 
field.  Each of the sensor elements is packaged in a bridge configuration and each output is 
connected to a 16-Bit A/D converter.  A computer records the digital outputs for storage and 
analysis.3  

3. Test Instrumentation 

The instrumentation block diagram that includes the four sensors used in the test is shown in 
figure 3.  The magnetometer connects to the serial port of the computer with an RS-485 four-port 
isolated interface card, which allows simultaneous monitoring of the four magnetometers at 
distances up to 4,000 ft.  The software interface to the computer is a National Instruments 
LabVIEW program.   The program is compiled, and enables data collected at 20 samples per 
second, to be stored in a data file, and enables one of the magnetometer’s outputs to be displayed 
graphically on the monitor as the data is being collected.  The LabVIEW program attaches a 
time-stamp from the computer’s clock to the data as it is being stored.  The data Baud rate is 
19,200 sec–1. 

 

Junction
Box

Magnetometers

Magnetometers

RS-485 Interface Board

ComputerMonitor

Printer

Instrumentation Used in
Field Test 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Diagram of instrumentation used in field test showing sensors,  
junction box, cables, computer, and printer.   

Each HMC 2003-T magnetometer has a DB9-pin connector.  Four of the pins were used:  two 
signal leads, and two power leads. A special junction box contains 8 D-cells to provide voltage to 
all four magnetometers and has suitable interconnections for sending data from all four sensors 
back to the computer on a single 8-wire cable.  This allows the power to be supplied in the 
vicinity (within about 30 feet) of the magnetometers, but does not require power to be 
                                                 

3Honeywell, HMR-2300 Smart Digital Magnetometer Manual. 
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transmitted the several hundred feet from the computer.  The junction box contains four 
connectors wired for the magnetometers, and two connectors wired for data signals to the 
computer.  This method allows the computer to be located in a van about 300 to 400 ft from the 
magnetometers.  The junction box is 30 ft from the magnetometers. 

4. Field Test Arrangement and Test Procedures 

The test field shown in figure 4 consists of a test track, which was a dirt and gravel track about 
14 ft wide and about one mile in circumference.  The long direction of the track ran due north 
and south, and the van was located at the southern end about 100 feet from an electrical power 
pole.  The four magnetometers were arranged in a square array as shown in figure 5.  Two 
magnetometers were about 24 ft apart along the track and 12 ft from the center of the track.  Two 
additional sensors were 24 ft further from the first two sensors, or 36 ft from the center of the 
track.  There was about a 2 ft uncertainty in the position of the vehicles relative to the center of 
the track.  The orientation of the magnetometers inadvertently was not recorded.  The test 
procedure was to initiate recording when the vehicle started at the far end of the track and to stop 
when the vehicle passed out of range of the sensors.  

 

Van with computer and
data recording equipment

Sensor
Array

NorthTrack

Layout of Field Showing Magnetometer Array

Van with computer and
data recording equipment

Sensor
Array

NorthTrack

Layout of Field Showing Magnetometer Array

 
 

Figure 4.  Layout of test field showing locations of sensor array 
and instrumentation van. 
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Orientation
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Magnetometer 2

Magnetometer 1

Track

 
 
 
 
 
 
 
 
 

Figure 5.  Arrangement of magnetometer array beside track. 

5. Test Results 

Distinguishing Different Vehicles 

Figure 6 shows the signatures of three vehicles described earlier as they passed in succession by 
the magnetometer located 12 ft from the center of the track.  Figures 7, 8, and 9 compare the x-, 
y-, and z-anomalies for the three vehicles as seen by the sensor 12 ft from the center of the track. 
Each vehicle has a distinct signature as compared with the other vehicles. One sees that for each 
axis, all three anomalies are distinct, with the tank, vehicle B, having the largest amplitude.   
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A 

B 

C 

Figure 6.  The x-axis signatures of a light wheeled vehicle (Vehicle A), tank (Vehicle B), 
and 2.5-ton truck (Vehicle C) as the vehicles passed by a sensor near the track 
(12 ft from center of track). 
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Figure 7.  The x-axis signatures of all three vehicles as recorded from the magnetometer near the 
track (12 ft from center of track).  
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Figure 8.  The y-axis signatures of all three vehicles as recorded from the magnetometer near 
the track (12 ft from center of track).  
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Figure 9.  The z-axis signatures of all three vehicles as recorded from the 
magnetometer near the track (12 ft from center of track).  

These distinctions disappear in the sensor 36 ft from the center of the track.  This is evident in 
figures 10, 11, and 12 for Vehicles A, B and C, respectively.  The left side of each figure shows 
the x-, y-, and z-axis anomaly signals for the sensor near the track, and the right side shows the 
corresponding signals from the sensor farther from the track.  For every vehicle each axis signal 
from the near sensor, which is 12 ft from the center of the track, is distinct.  The right side shows 
the same vehicle as seen by the sensor far from the track, which is 36 ft from the center of the 
track.  (The signals from the farther sensor have been averaged over 10 data points to smooth out 
the bit noise, which is about 7 nT.)  Note that the signal for each axis also is distinct.  However, 
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the details detected by the close sensor cannot be seen in the data taken using the far sensor.  The 
signals detected by the far sensor are more like a magnetic dipole. 

 
        Sensor near track                                                 Sensor far from track  
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Figure 10. Vehicle A magnetic field components detected by two three-axis magnetometers:  the nearer one 12 ft 
from the center of the track, and the farther one 36 ft from the center of the track.   
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Figure 11.  Magnetic field components of Vehicle B (tank) detected by two three-axis magnetometers:  the nearer 
one 12 ft from the center of the track, and the farther one 36 ft from the center of the track.  
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Figure 12.  Magnetic field components of Vehicle C (truck) detected by two three-axis magnetometers:  the nearer 
one 12 ft from the center of the track, and the farther one 36 ft from the center of the track.  

A comparison of the right hand side of figures 11 and 12 shows that, at the far sensor, the tank 
and the truck are indistinguishable from each other in terms of anomaly shape, but that the tank 
signal has a much greater amplitude. 

The significance of these results is that this UGS-appropriate technology, when comparing the 
vector component signals, can discriminate gross feature differences between vehicles.  The 
component amplitudes indicate the relative magnetic size of vehicles that pass at the same 
distance from the sensor. 
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Total Field Anomaly For Sensors Near and Far From Track 

The total field signal is a useful tool in obtaining information about the vehicles.  The total field 
at each time data point is calculated as the square root of the sums of squares of the component 
values.  The total field signals are shown in figure 13 for all three vehicles.  The signals from the 
near sensor are on the left, and the corresponding signals from the far sensor are on the right side.  
The total field signal for each vehicle lacks the distinguishing shape features of the component 
signals and the amplitude decreases with distance from the sensor. 

 

 

-5,000

0

5,000

10,000

15,000

20,000

25,000

0 10 20 30 40 50
Time (sec)

Vehicle A

Vehicle B

Vehicle C

-100

0.00

100

200

300

400

500

600

700

0 10 20 30 40 50
Time (sec)

Vehicle A

Vehicle B

Vehicle C

Sensor near 
road.

Sensor far
From road.

Figure 13.  Comparison of Total Field of each of three vehicles for sensors near (12 ft from center of track) and far 
(36 ft from center of the track). 

We now examine the dependence of the amplitude and signal width on distance of the sensor 
from the vehicle.  Figure 14 shows a typical total field signal, and demonstrates the relationship 
between the amplitude and signal width—defined as the time difference between the two half-
maximum amplitude (nT) signal points. 
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Figure 14. Total field signal from sensor near the track for Vehicle B 
(tank) showing the definition of signal width as the time 
difference between the two half-maximum amplitude (nT) 
signal points. 

 
Table 1 lists the total field signal amplitude and width for all three vehicles for the sensor 12 ft 
from the center of the track and 36 ft from the center of the track.  It also lists the cube root of the 
12 ft to 36 ft amplitude ratios.  The field created by a dipole at two different distances varies as 
the inverse cube of the sensor distance ratio.  Because, in our test, the ratio of the far sensor 
distance to the near sensor distance is three, the cube root of the total field amplitude ratios 
should be three.  This ratio for the three vehicles is about 3.  Table 1 also shows that the signal 
widths are larger, and the amplitudes are smaller for the further sensor.  As expected the widths 
are larger for the more distant sensor.   

Table 1.  Total field signal amplitude and width for three vehicles as seen by sensor near track and far from track.  

 Maximum Signal 
Amplitude (nT) 

Signal Width at 
Half-Maximum 
Amplitude (sec) 

(Ampl near/Ampl   far)1/3   

Sensor near track    

Vehicle A 3,942              1.34      2.8 
 

    Vehicle B        22,661 0.6 3.3 
Vehicle C 6,949 1.16 2.8 

   Average      3.0 
Sensor far from track    

Vehicle A 187 2.7 n/a 
Vehicle B 626 2.0 n/a 
Vehicle C 319 2.1 n/a 
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Figure 15 shows the total field data for the tank, Vehicle B, adjusted in three ways.  First, we 
adjusted the time axis so that the peaks occur at the same time.  Second, we normalized the 
amplitudes of each signal to be unity at the peak.  Third, we scaled the time by the time interval 
between the signal half-maximum amplitude points defined earlier.  The two curves nearly 
coincide when the data is plotted in this way.  At this point we are considering a dipole-like 
signal. In this case, the total field signal shape, when treated in this way, is independent of the 
separation between the target and the sensor, and may prove useful in location and tracking 
algorithms.4 

The significance of these results is that the total field signal amplitude indicates the relative 
magnetic size of vehicles passing at the same distance of closest approach (PCA) to the sensor.  
The normalized and scaled total field signals are independent of sensor-target distance.  These 
features may be helpful when the signals are used in location and tracking algorithms. 

0.0

0.2

0.5

0.7

1.0

1.2

10 12 14 16 18 20
Time/T(half-max ampl)

Sensor near road. 
Sensor far from road.

 

Figure 15.  Similarity of total field signal shapes of Vehicle B from near and far sensors 
when fields are normalized with peak amplitude, and time is given in units of 
signal width. 

                                                 
4Edelstein. US Patent No. 6,675,123, “Magnetic Tracking Methods and Systems,” June 6 2004. 
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Distinguishing Direction of Motion of Tank 

The magnetometer near the track distinguished between the tank moving backward and forward 
on the track, as shown in figure 16.  This figure compares the x-, y-, and z-anomalies for the tank 
moving backward (left column) and forward (right column).  It is clear that each anomaly for 
backing up is the mirror image of the corresponding anomaly for going forward.  The traces for 
moving forward are greater in amplitude and more compressed in time, probably as a result of 
the tank going forward faster than backing up.  The differences in amplitude going forward may 
be due to the tank’s path being slightly closer to the sensor. 
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Figure 16.  Comparison of x-, y-, and z-anomaly fields for tank (Vehicle B) moving backwards and then 
forwards on track. 

 16



 

Stationary Tank Rotates Turret 
Figure 17 compares the anomalies for the sensor 12 ft from the track with the sensor 36 ft from 
the track when the stationary tank rotated its turret once.  The far sensor (right side of figure 17) 
clearly loses details that are detected by the near sensor.   

 
          Sensor near track                   Sensor far from track 
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Figure 17.  Comparison of x-, y-, and z-anomaly fields for tank (Vehicle B) rotating its turret as seen by sensors 
near (12 ft from center of track) and far (36 ft from center of the track). 

Tank Raising and Lowering Gun 

Figure 18 contains the x-, y-, and z-anomalies detected by the sensor 12 ft from the track when 
the tank is stationary and the gun is raised and lowered twice.  All three traces exhibit the same 
oscillatory motion.  The y-anomaly has the largest amplitude, about 950 nT, compared to 170 nT 
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for the x-anomaly and 70 nT for the z-anomaly.  These results show that vector magnetometers 
using UGS-appropriate AMR technology can distinguish different activities of a tank. 
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Figure 18.  Comparison of x-, y-, and z-anomaly fields for stopped tank 
(Vehicle B) raising and lowering its gun twice as seen by sensor 
12 ft from the track.  These signals have been averaged over 
every 10 data points to smooth out the bit noise which is 7 nT. 
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6. Conclusions 

We have presented magnetic sensor data taken with four AMR magnetoresistance sensors of 
three vehicles.  In the case where the sensors were 12 ft from the center of the track, the vector 
component signals were quite different for the light wheeled vehicle, a tank, and a 2 ½ ton truck.  
The signals measured at 36 ft from the center of the road were approximately that of magnetic 
dipoles.  However, the orientation of the dipole for the light wheeled vehicle was different from 
the orientation of the dipole of the tank and the truck.  The time between when the signal was at 
half its maximum values was larger for the more distant sensors.  One can detect when the tank’s 
gun turret was rotated with both the sensors at 12 and 36 ft from the tank.  The signal from 
raising and lowering the gun was smaller than the signal from rotating the gun turret and could 
only be detected by the sensor that was 12 ft from the tank.  The signals detected at 12 ft and 36 
ft from the tank had the same shape when the amplitudes and times were scaled.  For all vehicles 
tested, the ratio of the cube root of the signal of the sensor near the track to that of the sensor far 
from the track approximately equals 3, as expected for the dipole model.  When the total field 
signal is normalized by the maximum detected field, and the times are expressed in terms of the 
signal width at half-maximum field, the detected total field signal shape is independent of the 
distance between the sensor and the target.   

When the total field signals from each sensor are normalized by the maximum detected field, and 
the times are expressed in terms of the signal width at half-maximum field, the detected total 
field signal shape is identical for a sensor near the target and a sensor further away.  The signal 
shape when modified in this manner is positive, has a clearly-defined peak, and is independent of 
the target speed, shape or distance from the sensor.  This modified total field signal (normalized 
field amplitude versus scaled time) when considered in conjunction with the usual signal (field 
amplitude versus time) may be useful in target location and detection algorithms.  The results 
reported on here indicate that low cost AMR magnetic sensors appropriate for use in UGS 
networks can provide information useful in classifying target vehicles, distinguishing some 
vehicle activities, and estimating vehicle magnetic size. 
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